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Simulation of particles released near the wall
in a turbulent boundary layer

A.J. Dorgan, E. Loth *

Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign,

306 Talbot Laboratory, 104 South Wright Street, Urbana, IL 61801-2935, USA

Received 15 July 2003; received in revised form 9 May 2004
Abstract

A direct numerical simulation was used along with a Lagrangian particle tracking technique to study

particle motion in a horizontal, spatially developing turbulent boundary layer along an upper-wall (with

terminal velocity directed away from the wall). The objective of the research was to study particle diffusion,

dispersion, reflection, and mean velocity in the context of two parametric studies: one investigated the effect

of the drift parameter (the ratio of particle terminal velocity to fluid friction velocity) for a fixed and finite

particle inertia, and the second varied the drift parameter and particle inertia by the same amount (i.e. for a
constant Froude number). A range of drift parameters from 10�4 to 100 were considered for both cases. The

particles were injected into the simulation at a height of four wall units for several evenly distributed points

across the span and a perfectly elastic wall collision was specified at one wall unit.

Statistics collected along the particle trajectories demonstrated a transition in particle movement from

one that is dominated by diffusion to one that is dominated by gravity. For small and intermediate sized

particles (i.e. ones with outer Stokes numbers and drift parameters much less than unity) transverse dif-

fusion away from the wall dominated particle motion. However, preferential concentration is seen near the

wall for intermediate-sized particles due to inhomogeneous turbulence effects (turbophoresis), consistent

with previous channel flow studies. Particle–wall collision statistics indicated that impact velocities tended

to increase with increasing terminal velocity for small and moderate inertias, after which initial conditions
become important. Finally, high relative velocity fluctuations (compared to terminal velocity) were found

as particle inertia increased, and were well described with a quasi-one-dimensional fluctuation model.
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1. Introduction

Particle motion in a horizontal turbulent boundary layer with a gravitationally-induced ter-
minal velocity away from the wall is important to several external flows, e.g. particles ablating or
released just below an aerodynamic surface. Some of the primary parameters that control particle
diffusion in a turbulent boundary layer include the drift parameter, the Stokes number (based on
either outer scales or wall scales), the Froude number, and the Reynolds number. Herein, the drift
parameter, c, is defined as the ratio of particle terminal velocity ðVtermÞ to the wall friction velocity
of the fluid ðusÞ, the outer Stokes number ðStd) is the ratio of particle response time ðspÞ to a large
eddy time scale ðsd ¼ d=usÞ, the wall Stokes number ðStþÞ is the ratio of sp to a wall time-scale
ðsþf ¼ mf=u2sÞ, Frd is an outer Froude number relating convection to gravitation and is based on the
boundary layer thickness, Red is the Reynolds number of the continuous phase based on the
boundary layer thickness, Rep is the particle Reynolds number based on the relative velocity, and
Rep;term is the particle Reynolds number based on the particle’s terminal velocity:
c ¼ Vterm
us

; Std ¼
sp
sd

¼ sp
d=usð Þ ; Stþ ¼ sp

sþf
¼ sp

mf=u2s
� � ; Frd ¼

u2s
gd

Red ¼
U1d
mf

; Rep ¼
Vrelj jdp
mf

; Rep;term ¼ Vtermdp
mf

ð1Þ
where mf is the fluid kinematic viscosity, U1 is the free-stream velocity, d is the reference boundary
layer thickness, g is the acceleration of gravity, and Vrel is Vp � Vf (whose magnitude is equal to
Vterm, in quiescent conditions). Assuming a linear drag-law (i.e. small particle Reynolds numbers)
and negligible added mass (i.e. the particle density is much greater than the fluid density), the
particle response time is given as sp ¼ Vterm=g. In this case, a linear relationship exists between the
Stokes number, Froude number, and the drift parameter, i.e. Std ¼ cFrd.

The fluid’s integral time scale ðsKÞ is based on the streamwise fluid velocity decorrelation
integral (to be defined in Section 2.3) and tends to be bounded by sd and sþf . For long-time (t � sp
and t � sK) particle diffusion in homogeneous isotropic turbulence, previous experimental and
numerical studies have shown that c (via the crossing trajectory effect) is the main controlling
parameter (Stock, 1996; Loth, 2000). In particular, the long-time diffusion rate for c � 1 is locally
similar to that of a tracer particle, while the diffusion rate reduces as approximately c�1 for large
drift parameters.

While the influence of the Stokes number is weak for long-time diffusion, it can significantly
reduce the rate of diffusion for short-times (t � sK) when large Stokes numbers are considered.
This is grounded in the physical nature of large inertia particles as the dispersion is not strongly
affected by individual turbulent structure events, e.g. an eddy or a boundary layer ejection.
(Herein, ‘‘diffusion’’ refers to mean-spread of the particle cloud, and ‘‘dispersion’’ refers to par-
ticle motion associated with an individual spatial/temporal turbulent structure.)

Particle diffusion and dispersion in inhomogeneous turbulent flows introduces additional
complexity (as compared to that in homogeneous turbulence). Kaftori et al. (1995) experimentally
studied the motion of nearly neutrally buoyant particles near the wall of a spatially-evolving
boundary layer for a range of Stþ from 0.2 to 18, in which the particles do not deposit on the wall
but rather rebound as they make contact. The study found that particles concentrated in regions
of slow-moving fluid near the wall, i.e. exhibited ‘‘wall-peaking’’. Young and Leeming (1997)
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noted that this phenomenon of wall-peaking is due to ‘‘turbophoresis’’ (a convective drift of
particles down gradients of mean-square fluctuating velocity) and could be approximately mod-
eled as a function of the Stokes number.

As discussed by Dorgan (2003) and overviewed below, direct numerical simulation (DNS) has
allowed researchers more insight into the particle dynamics and deposition for pipe and channel
flows, where inhomogeneous effects can be strong close to the wall. Brooke et al. (1992) con-
sidered a DNS test matrix consisting of Stþ values ranging from 3 to 10 for a channel flow. Their
study noticed that particles tend to concentrate in the viscous sublayer where they are trapped in
coherent streamwise structures (horseshoe vortices) which push the particles toward the wall.
Similarly, Pedinotti et al. (1992) observed preferential concentration in the low-speed streaks near
a DNS channel wall where the effect was most noticeable for the intermediate inertia values (i.e.
Stþ on the order of 3) but lessened when gravity was absent. Marchioli and Soldati (2002) ob-
served particle simulations for a DNS vertical channel in an attempt to understand the mecha-
nisms responsible for increasing the particle concentration in the near-wall region. The study
suggested that the Stokes number may be the more important parameter for the near near-wall
dynamics (consistent with the model of Young and Leeming, 1997).

There are several differences between the above DNS studies and the present study. Firstly, of
the DNS studies discussed above, none is for a canonical, spatially growing boundary layer (as in
the present case) and none consider as large an Res value (270 in the present study). Secondly,
none of the studies consider such a large range of c for both a fixed Froude number (consistent
with changing particle size in a fixed continuous flow) and a fixed Stokes number (to separate the
inertia and drift parameter effects). The latter study is not easily replicated experimentally––
though Wells and Stock (1983) used an electromagnetic field to achieve some aspects of this
condition. Thirdly, the present research considers the injection of particles near the wall (at
yþ ¼ 4), whereas most previous studies start with particles initially distributed uniformly
throughout the computational domain, injected at random points in the domain, or injected at the
centerline. Fourthly, the streamwise recycling of particle injections often used in channel flows is
not used herein since the flow, and thus particle concentration, is spatially developing. Finally,
most of the studies focused on deposition, whereas an elastic reflection condition is considered
herein.

For these unique flow and particle conditions, we examine particle diffusion, dispersion,
reflection, and velocity statistics. It should be noted that detailed turbulence and flowfield Eule-
rian statistics of the turbulent boundary layer are available (Dorgan, 2003). As such, RANS-based
numerical particle diffusion techniques (e.g. Lagrangian random walk models and Eulerian dif-
fusion transport models) can be validated with the present data for a well-characterized inho-
mogeneous, anisotropic flow (not subject to experimental uncertainties or RANS empiricism).
2. Methodology

2.1. Turbulent boundary layer

The continuous-phase solution for the turbulent boundary layer was obtained from a DNS of
the incompressible Navier–Stokes equations. The continuous-phase solution is independent of the
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particle trajectories as the particle concentration is assumed to be dilute and does not affect the
carrier phase (i.e. the flow only allows one-way coupling of the fluid on the particle motion). The
DNS code was developed by Spalart and Watmuff (1993) to simulate a three-dimensional, spa-
tially developing boundary layer with zero streamwise pressure gradient. The method is spectrally-
accurate in the three spatial directions and second-order accurate in time. The solution domain is
semi-infinite over a flat, smooth surface with 06 x6Kx, 06 z6Kz, and 06 y61 where x, z, and
y represent the streamwise, spanwise, and transverse directions and where Kx is the streamwise
domain length and Kz is the length of one period of the periodic spanwise domain. The domain is
discretized by 256 nodes in the stream direction, 96 in the span direction, and 55 in the transverse
direction for a total of 1,351,680 nodes in the three-dimensional mesh. Spatial evolution aspects
and time integration details are given by Dorgan and Loth (2003).

Eulerian statistics of the fluid properties are shown in Fig. 1 for transverse profiles of the mean
velocity, turbulent kinetic energy, and transverse velocity fluctuations at x ¼ Kx=3 (additional
data is given by Dorgan, 2003). The Eulerian-averaged properties in this figure are denoted by
[. . .] and represent averaging over a period of the spanwise domain and time of about 10 sd for
each transverse nodal location at this streamwise position. In Fig. 1a, the mean velocity profile is
normalized by us and there is evidence of the viscous sublayer below yþ � 20 and a transition to a
logarithmic curve by yþ � 50. The boundary layer edge is located at roughly yþ ¼ 270 (i.e.
Res ¼ 270) and comparison with the common ‘‘law of the wall’’ expressions for high Reynolds
number boundary layers show similar behavior. Fig. 1b shows the turbulent kinetic energy ðkÞ
profile normalized by u2s . Below yþ ¼ 1, the energy is nearly zero and approaches a maximum of
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

y+

y+ y+

[v
f'v

f']
 / 

u τ
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

[k
] 

/ u
τ2

0

5

10

15

20

25

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

u
+ u+ = y+

u+ = 2.5 ln(y +) + 4.9

 (a)  (b)

 (c)

Fig. 1. DNS statistics at Kx=3 for (a) the mean velocity profile, (b) the turbulent kinetic energy profile and (c) the

transverse velocity fluctuation autocorrelation.



A.J. Dorgan, E. Loth / International Journal of Multiphase Flow 30 (2004) 649–673 653
about 3.6 at around yþ of 15, then approaches zero toward the boundary layer edge. This is
qualitatively consistent with the experiments of Klebanov at Res ¼ 2800 as reported by Hinze
(1959) with a peak of 6us at a yþ of about 22. The transverse velocity fluctuations represent the
smallest component of k such that ½v0fv0f � peaks at a magnitude of only 0:9us at yþ of about 70. In
comparison, the Klebanov data indicated a peak ½v0fv0f � of 0:92us, a magnitude also consistent with
experimental pipe flow and DNS data reported by Young and Leeming (1997). The location for
the peak transverse velocity fluctuation is about 60 for the present results but varies substantially
in the literature, e.g. about 280 for the data cited by Hinze but about 50 for the data cited by
Young and Leeming (1997).

2.2. Particle equation of motion

The Lagrangian equation of motion for a heavy, rigid particle used herein is given by
qp

dVp

dt
¼ �18qfmf

Vrel

d2
p

þ qpg ð2Þ
where dp is the particle diameter, and qp and qf are particle and fluid densities, respectively. In this
expression, qp was assumed to be much greater than qf such that other forces, such as the lift force
(which acts perpendicular to both the drag force and the vorticity of the fluid), the stress gradient
force (which accounts for gradients in the pressure and shear stress in the fluid surrounding
the particle), and the Basset history force (which is associated with the temporal delay in the
boundary layer development on the particle) may be assumed negligible. The first term on the
RHS represents the Stokesian drag force and the second term is due to the buoyancy force with g
representing the gravity vector. A linear drag law has been employed as it avoids the non-
linearities and empiricism associated with high Reynolds number expressions. In addition, the
particles are treated as point-volumes and rotation and shear effects are neglected. These
assumptions were employed to focus the study on drag, inertia, and gravitational effects.

The particle trajectories are computed by numerically integrating the particle equation of
motion. The integration is performed using a modified version of the exponential-Lagrangian
method as described by Barton (1996) and discussed by Dorgan (2003). The exponential-
Lagrangian scheme is given by
Vpðt þ DtÞ ¼ VpðtÞ exp
�
� Dt=sp

�
þ 1
�

� exp
�
� Dt=sp

��
sp � 1

sp
Vf

�
þ g

�
ð3Þ
The exponential-Lagrangian schemed was implemented in an Adams–Bashforth, predictor–cor-
rector fashion for second-order accuracy in time. To find the average fluid velocity along the
trajectory, an eight-node isoparametric hexahedron was utilized with tri-linear interpolation.

2.3. Test conditions

The baseline test condition for the particle/turbulent boundary layer interaction was chosen as
Std ¼ 10�2 and c ¼ 10�2 (and thus a Froude number of unity). This is consistent with a 24 lm
diameter solid sphere with a density of 1000 kg/m3 in a flow of air with d ¼ 22 cm and us ¼ 1:47
m/s (Res of approximately 22,000). In this case, the particle radius is equal to one wall unit, and
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elastic reflection with the wall occurs when the transverse location of the particle centroid (yþp )
equals one.

The test conditions for the constant inertia study are centered on the baseline condition and
used a range of five drift parameters varying from 10�4 to 100, all for the baseline Std of 10�2

ðStþ ¼ 2:7Þ. This Std value (10�2) ensures that inertial effects are small (i.e. the particle is able to
effectively respond to the majority of the fluid structures in the boundary layer but does not simply
behave as a passive scalar in the near-wall region). Since Stokes number is held constant, the
exclusive effect of varying the drift parameter can be isolated. The test conditions for the constant
Frd study include seven different cases all with Frd ¼ 1, where Std ¼ c through a range of c from
10�4 to 100. In both studies, the baseline test condition described above represents the center of the
c range as viewed on a logarithmic scale (Table 1a) where the wall Stokes number, Stþ, is seen to
be much larger than the outer Stokes number, Std.

In order to assess a local Stokes number, the transverse distribution of the fluid integral time-
scale was first obtained. The streamwise integral Lagrangian time-scale of the fluid (sK;u) is defined
with the decorrelation of the streamwise velocity fluctuations (u0f )
Table

Partic

c

(a)

1·
1·
1·
1·
1·

(b)

1·
1·
1·
3.16

1·
3.16

1·
sK;uðyÞ ¼
Z 1

0

hu0fðtÞu0fðt þ sÞids=hu0fðtÞ
2i ð4Þ
where
u0fðx; y; z; tÞ ¼ ufðx; y; z; tÞ � ½ufðx; yÞ� ð5Þ
Several DNS runs were conducted to find the above Lagrangian decorrelation for a fluid tracer
ðup ¼ ufÞ injected at various transverse locations. Similarly, sK;v and sK;w were obtained and the
three time-scales averaged together to give sK as a function of yþ (Bocksell, 2003). The local
Stokes number, hStKi, can then be calculated based on the particle-observed fluid integral time
1

le conditions for (a) constant Stokes number study and (b) constant Froude number study

Std hStKi Stþ sdom=sK sdom=sp

10�4 1 · 10�2 9.74E)02 2.7E+00 21.0 216

10�3 1 · 10�2 9.46E)02 2.7E+00 19.7 208

10�2 1 · 10�2 8.33E)02 2.7E+00 14.6 176

10�1 1 · 10�2 6.66E)02 2.7E+00 9.2 138

100 1 · 10�2 4.74E)02 2.7E+00 4.9 103

10�4 1 · 10�4 8.3E)04 2.7E)02 14.8 17695

10�3 1 · 10�3 8.3E)03 2.7E)01 14.6 1757

10�2 1 · 10�2 8.3E)02 2.7E+00 14.6 176

· 10�2 3.16 · 10�2 2.6E)01 8.4E+00 14.4 55

10�1 1 · 10�1 7.9E)01 2.7E+01 12.6 16

· 10�1 3.16 · 10�1 2.0E+00 8.4E+01 9.3 5

100 1 · 100 4.5E+00 2.7E+02 7.4 2
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scale, sKðyþÞ, i.e. sampled along the particle path. Table 1 shows that hStKi is bounded by Std and
Stþ.

The particles were injected with the sum of the mean fluid velocity and the terminal velocity, i.e.
with up ¼ ½uf � (approximately 4us), vp ¼ ½vf � þ Vterm, and wp ¼ ½wf � ¼ 0 (where u, v, and w represent
the streamwise, vertical, and spanwise velocity components, respectively and where ð. . .Þp and
ð. . .Þf distinguish particle velocities from fluid velocities). This choice of injection (as opposed to
injecting at the instantaneous fluid velocity plus the terminal velocity) ensured that the particles
with the largest Stokes numbers would not possess unrealistically large initial velocity variations
that are generally inconsistent with their long response times. In order to prevent wall collisions
from acting as the dominant diffusion phenomena for the larger particles, the particle’s terminal
velocity is directed away from the wall. A perfectly elastic wall collision at yþ of 1 was imposed
as a reflection condition (consistent with the baseline physical particle dimensions) so that the
particles would move downstream in a reasonable time period regardless of the Stokes number.

The particles were injected at uniform spanwise locations at yþ ¼ 4 and x ¼ Kx=3 and tracked
through a distance of 15 boundary layer thicknesses downstream (Fig. 2). Fifty particles were
injected every other time-step (i.e. at every 0.57sþf ) for a period of 4000 time steps (4.38sd) such
that a total of 100,000 particles were injected (large enough for converged statistical results). The
streamwise injection location corresponds to Red ¼ 4500 and Res � 270. The streamwise portion
of this particle tracking region was non-dimensionalized with respect to the reference boundary
layer thickness as 06 x� 6 15, where x� ¼ ðx� Kx=3Þ=d and the reference boundary layer thick-
ness, d, is the thickness at Kx=3. Similarly, the spanwise domain was non-dimensionalized by d to
obtain 06 z� 6 5:56, where z� ¼ Kz=d.
3. Results

3.1. Flow-visualization

In order to identify how the particles interact with the carrier phase, several instantaneous
snapshots of the simulation were obtained for the various conditions considered. In the following
figures, the particle positions are mapped onto the streamwise velocity field for a given spanwise
location. The fluid solution corresponds to z� ¼ 2:78 (the center of the span) and the particles
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(shown as black dots) are located in a range surrounding the fluid plane from 2:606 z� 6 2:95.
This limited spanwise range for particle positions was chosen to be large enough to include a
significant number of particles for the visualization, but at the same time remain sufficiently small
to insure that the selected fluid plane is a good representation of the fluid solution in the
neighborhood of the actual particle location. Fig. 3 gives visualizations of the constant Stokes
number simulation for the particle conditions c ¼ 10�4, 10�1, and 100 with Std ¼ 10�2. Fig. 4
Fig. 3. Instantaneous streamwise distribution (color range) with particle locations (shown as black dots) with constant

Std ¼ 10�2 for (a) c ¼ 10�4, (b) c ¼ 10�4 but with a magnified view of the red box seen in (a), (c) c ¼ 10�1 (red arrows

indicate wall sweeps), and (d) c ¼ 100. (For interpretation of the references in colour in this figure legend, the reader is

referred to the web version of this article.)
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shows the visualizations of the constant Froude number study for the c ¼ 10�4, 10�1, 0.316, and
100 cases with Frd ¼ 1. Note comparisons between the two studies for the same c (e.g. 10�4, 10�1,
100) would indicate differences due to the Stokes number.

First, the constant Stokes number study shown in Fig. 3 will be discussed. In looking at the
close-up picture for the c ¼ 10�4 case (Fig. 3b), it is noted that the particle ejections tend to
correspond to boundary layer ejections from the near-wall region, i.e. low-speed fluid thrusting
into the outer region of the boundary layer. This preferential concentration is expected as
boundary layer ejections should be the primary mechanism for moving particles rapidly away
from the wall. As the particles move farther downstream (and away from the wall) the correlation
Fig. 4. Instantaneous streamwise distribution (color range) with particle locations (shown as black dots) with constant

Frd ¼ 1 for (a) c ¼ 10�4, (b) c ¼ 10�1, (c) c ¼ 3:16� 10�1, and (d) c ¼ 100. (For interpretation of the references in colour

in this figure legend, the reader is referred to the web version of this article.)
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between the fluid structures and the particle location tends to be reduced but is still significant
(Fig. 3a). In addition to this mechanism for particle movement, sustained near-wall concentration
is also evident in the low-speed regions close to the wall. This particle condition has sufficient
inertia ðStþ ¼ 2:7Þ to experience preferential concentration in the near-wall region through the
process of turbophoresis. As noted by Marchioli and Soldati (2002), the mechanism responsible
for high near-wall concentrations of inertial particles is the superior effectiveness of wall-sweep
structures moving particles to the wall as opposed to boundary layer ejections removing particles
from the near-wall region.

The c ¼ 10�1 (Fig. 3c) case shows effects of the increased terminal velocity. The level of near-
wall concentration is reduced as the particles are more effectively pulled from the near-wall
structures (i.e. the terminal velocity is strong enough to overcome the effects of turbophoresis).
Far downstream ðx� > 10Þ the particles tend to be in the outer-region of the boundary layer and
show less correlation with low-speed fluid pockets ejected from the wall than noted for the
c ¼ 10�4 case. This is attributed to the increased crossing-trajectory effect whereby particles cut
through eddies instead of remaining trapped inside them. An interesting phenomenon shown in
Fig. 3c are tongues of high speed fluid (wall sweep structures) forcing particles back to the wall at
x� locations of approximately 2.5, 4.5, and 6.5 (see red arrows). Fig. 3d gives the snapshot of the
c ¼ 100 simulation. The particles are seen to immediately leave the transverse injection location
and enter the outer regions of the boundary layer due to the particle’s higher terminal velocity.
However, the cloud disperses as much as is seen in the lower drift parameter case due to the
constant Stokes number condition.

As mentioned above, the constant Froude number results are shown in Fig. 4 for four selected
test conditions. Fig. 4a shows a visualization taken from the Std ¼ c ¼ 10�4 case ðStþ ¼ 0:027Þ––
the nearly tracer particle case. After the particles move from the injection location where the
concentration is necessarily compact, it is noted that the particles are more uniformly distributed
across a portion of the boundary layer than in Fig. 3b (i.e. less correlation is noticed between
particle location and fluid structure than in the case shown in Fig. 3a where Stþ ¼ 2:7). This is
attributed to their tendency to exhibit fluid tracer diffusion characteristics since turbophoresis and
preferential concentration effects are negligible due to a lack of particle inertia (Wang and Maxey,
1993, Young and Leeming, 1997).

In Fig. 4b (c ¼ 10�1 and Std ¼ 10�1) the particles maintain a stronger near-wall concentration
despite their increase in terminal velocity. As the particles in this test case have a Stþ of 27 they are
difficult to remove from the near-wall structures (i.e. c is not sufficiently large to pull the particles
from the near-wall structures). This is consistent with the fact that the large particle ejections (e.g.
x� ¼ 3:5) correspond to previous large fluid ejections from the boundary layer. In comparing the
c ¼ 10�1 cases of Figs. 3c and 4b, it is obvious that the higher Stokes number in the latter case
yields much less diffusion, which is attributed to the increased inertia.

Fig. 4c and d show the Std ¼ c ¼ 0:316 and Std ¼ c ¼ 1:0 cases, respectively, where the in-
creased particle inertia and crossing trajectory effect are quite evident in that the correlation with
flow structures is reduced. For each case, all the particles tend to leave the injection location on a
similar trajectory (especially for c ¼ Std ¼ 1) for a significant distance. After some downstream
location, several different trajectories can be identified but the particles fail to become strongly
diffused. In the c ¼ 1 case, it can be seen that the particles do not initiate significant diffusion until
near the mean boundary layer edge. In comparing Figs. 3d and 4d, it is seen that both cases yield
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the same net transverse rise velocity for the particle cloud, but the condition in Fig. 4d shows
much less mean diffusion than that of Fig. 3d. This is a consequence of the particles, 100 times
greater inertia for the present case shown in Fig. 4d. In general, the Std ¼ 1 particles primarily
convect downstream while moving away from the wall at their terminal velocity (mostly ignoring
the turbulence as they pass).
3.2. Particle concentration distribution

Fig. 5 shows the transverse particle distribution profile for both the constant inertia ðStþ ¼ 2:7Þ
study and the constant Froude number ðFrd ¼ 1Þ study at 15 boundary layer thicknesses down-
stream of injection. In this figure, C represents the concentration of particles in a transverse bin
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(obtained through net flux statistics) and C0 is the bulk concentration (equal to the average
concentration over all bins containing particles). The yþ values shown for c ¼ 10�4 locate the
center of each of the 26 transverse bins, which are used for all cases, and the arrow labeled yþinj
denotes the transverse injection location. Note that the c ¼ 10�3 case is omitted in this figure (and
others) as it was reasonably represented by the c ¼ 10�4 case, i.e. drift parameter effects were
found to be generally negligible for c < 10�3 (Dorgan and Loth, 2003).

The Stþ for all of the cases shown in Fig. 5a is of order one, implying that they should possess
inertial tendencies in the near-wall region (i.e. the particle’s response time is too large to allow it to
effectively react to the short time-scale turbulent fluctuations in the near-wall fluid). Young and
Leeming (1997), as well as Marchioli and Soldati (2002) noted that this condition leads to particles
becoming trapped in the near-wall region through the turbophoresis effect. The turbophoresis
phenomenon is caused by gradients in the fluid turbulence and acts to carry particles away from
the peak turbulence location. As such, particles released at yþ ¼ 4 will be in a region where
transverse velocity fluctuations increase away from the wall (Fig. 1c) and will therefore be moved
toward the wall if terminal velocity effects are negligible. This ‘‘trapping’’ feature is evident in the
distribution profile as a large near-wall peak is seen at yþ ¼ 2 for the smallest c condition at
x� ¼ 15. Additionally, the 10�1 case yields a leg that tends to flatten out smoothly in the outer
regions of the boundary layer where Std is the governing parameter and where the particle should
behave as a passive scalar since Std � 1.

Increasing the drift parameter essentially increases the strength of the terminal velocity (di-
rected away from the wall) and pulls the particles away from the near-wall structures of the
turbulence. As such, the effect of turbophoresis (a near-wall, inertial phenomenon) competes with
the strength of the terminal velocity in determining the particle cloud’s transverse movement. For
example, the c ¼ 10�2 case has a peak concentration at yþ � 3 shifted towards the wall due to
turbophoresis. However, as c increases, the terminal velocity is sufficiently large that many of the
particles are pulled to the outer regions of the boundary layer where they are capable of diffusing
like fluid tracers since the effective Stokes number, hStKi, is of the order Std (and not Stþ) in this
region. The largest c case ðc ¼ 1Þ has the lowest peak concentration and appears to be the most
diffused as the width of the distribution profile is considerably larger than that of the other cases.
This is most likely due to its immediate withdrawal from the near-wall region and its abrupt
exposure to the larger turbulent scales in the outer regions of the boundary layer.

Fig. 5b shows the particle distribution profile for selected cases with Frd ¼ 1 at x� ¼ 15. As the
drift parameter (and Stokes number) increase, the particles generally move away from the wall
and have smaller peak concentrations (for both streamwise locations). It should be noted that the
smallest particles for the constant Frd study ðStd ¼ c ¼ 10�4Þ tend to behave as passive tracers
(since their Stþ is much less than unity) and simply move with the fluid––this was not the case for
the constant Stokes number study results for c ¼ 10�4. Examining the results for c ¼ 10�4 shown
in Fig. 5a ðStþ ¼ 2:7Þ and Fig. 5b ðStþ ¼ 0:027Þ, it is seen that the near-wall concentration in the
former case is predominately a result of the inertial effect. This qualitatively supports the postulate
by Young and Leeming (1997) that turbophoresis is a function of Stþ, and not c for turbulent
wall-shear flows.

The larger cases (c ¼ 10�1, 0.316, and 1) have a reduced concentration in the near-wall region
when compared to the smallest two cases shown in this figure, and is attributed to their relative
magnitudes of terminal velocity. The increase in the drift parameter pulls the particles from the
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near-wall region and prevents inertial effects such as turbophoresis from pushing them to the wall.
The influence of c on the largest particle condition is very obvious as the distribution profile peaks
in the neighborhood of yþ ¼ 400 (approximately 1.5d) at x� ¼ 15. The sharper peak, as compared
to particles of lesser c, indicates a reduction in diffusion caused by the increase in the crossing
trajectory effect. Additionally, this reduced diffusion (as compared to the c ¼ 1 case of Fig. 5a) is a
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result of the high inertia of the particle ðStd ¼ 1Þ, which causes the initial short-term diffusion rates
to be significantly reduced (as noted in Section 1).

Fig. 6a shows the transverse location of the peak concentration at x� ¼ 15 for the entire range
of c for both the constant Stokes number and constant Froude number simulations when sub-
jected to the turbulence field of the DNS solution. Additionally, a ‘‘zero-turbulence’’ curve is
given for both cases. This zero-turbulence data was collected by integrating the particle equa-
tion of motion using only the mean flow-field of the DNS solution, i.e. using only ½ufi�
and neglecting the fluctuating u0fiðtÞ. As such, all particles in the zero-turbulence field followed
identical trajectories and yielded a Dirac delta function for the concentration profile. In general,
the peak concentration locations for the zero-turbulence simulations are primarily a function
of the drift parameter, where an increase in terminal velocity leads to an increase in mean
transverse path location. Note that after moving 15d downstream, the particle locations in the
zero-turbulence case for c ¼ 10�4 are still very near the transverse injection location of yþ ¼ 4,
since they move by the influence of ½vf � and Vterm alone, both of which are quite small for this
condition.

Now let us consider the DNS trends where the particle trajectories include the effects of tur-
bulence. In general, the peak location increases with increasing c (as in the zero-turbulence case).
However, the smallest c values have peak locations very near the wall (e.g. yþ ¼ 2) indicating the
influence of the wall boundary condition for the initial concentration evolution (recall Fig. 5). The
smallest three c values (10�4, 10�3, 10�2) for both the constant Froude number ðFrd ¼ 1Þ and
constant inertia ðStd ¼ 10�2Þ studies have the same peak concentration locations at x� ¼ 15 sug-
gesting that changes in Stokes number at this level are negligible in terms of peak concentration
location (though Stþ did have a large effect on peak concentration magnitude and overall distri-
bution shape as noted in comparing Fig. 5a and b).

The c ¼ 10�1 case shows the largest difference due to Stokes number variation. The smaller
Stokes number case ðStþ ¼ 2:7Þ joins the corresponding zero-turbulence curve while the larger
Stokes number case ðStþ ¼ 27Þ remains well below its respective zero-turbulence level. This is
attributed to a reduction in diffusion caused by the increased inertia of the latter case. As c is
increased to 1.0, the particles are pulled from the near-wall region and the DNS data points
coincide with the zero-turbulence curves indicating that the mean particle transverse flux in these
cases is dominated by the terminal velocity.

Fig. 6b shows the location of the mean transverse particle trajectory location at x� ¼ 15 for the
entire range of c for both studies. Note that the data shown for the zero-turbulence curves is
identical to that presented in Fig. 6a due the absence of turbulent diffusion. Fig. 6b indicates that
turbulent diffusion causes the mean particle trajectory to lie on or above that predicted by the
zero-turbulence simulation. This is in contrast to the peak concentration shown in Fig. 6a,
where the DNS data fell on or below that predicted by the zero-turbulence simulation. For a
small drift parameter and small Stokes number, the mean transverse location (and thus mean
transverse velocity) is approximately constant. This is caused by the diffusion of fluid particles
away from the near-wall region and is a byproduct of the injection location, e.g. particles would
diffuse equally away from the injection locations if the particles were instead released a distance
away from the reflection plane. For large c values, the terminal velocity begins to dominate the
movement away from the wall such that the DNS and zero-turbulence mean trajectories become
similar.
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3.3. Particle diffusion rates

Fig. 7 shows the spanwise mean-square deviation of the particle’s position relative to the
injection location. Fig. 7a gives the data for four drift parameters of the constant Stokes number
study while Fig. 7b shows the data for five drift parameters of the constant Froude number study.
As there is no component of terminal velocity acting in the spanwise direction (i.e. ½zp � z0� ¼ 0)
these plots can be directly related to turbulent diffusion. In general, the spanwise diffusion in-
creases with time for Fig. 7a and b. However, in Fig. 7a (constant Stokes number) the diffusion
increased with c while in Fig. 7b (constant Froude number) the diffusion decreased with increas-
ing c.
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To understand this result, it is instructive to first consider the case of c ¼ 1 and Std ¼ 10�2 of
Fig. 7a. Unlike the other c cases, this particle set will not be significantly affected by near-wall
turbophoresis as few particles continue to reside in yþ < 70 (see Fig. 5a). In addition, the particle
Stokes number is sufficiently small with respect to the eddies in the outer region that it may be
considered to have long-time diffusion as t=hsKi approaches 10. Furthermore, the outer region is
approximately homogeneous and isotropic. As such, one should expect the mean-square diffusion
to approach a linear variation with time as discussed by Hinze (1959), which is reflected in the Fig.
7a results. As c is reduced (for Std ¼ 10�2, Stþ ¼ 2:7) the mean diffusion is reduced since the
particles are less likely to reside in the outer region of the boundary layer where sK is greatest. In
addition, the diffusion rate for low c values tends to be quadratic even at longer times. Thus, the
inhomogeneity and anisotropy of the near-wall region significantly modifies the spread rate of the
overall particle cloud.
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For Fig. 7b, the tracer particles (c ¼ Std ¼ 10�4) tend to transition from roughly quadratic
diffusion at short-times to nearly linear diffusion at long-times, as expected. However, the increase
in c is associated with an increase in Stokes number. As such, the reduction in the short-time
particle diffusion can be expected, owing to the increased inertia and reduced responsiveness of the
particles. In fact, the initial diffusion rate for c ¼ 0:01 is nearly quartic. This suggests that the
crossing trajectories behavior significantly modifies the particle cloud spread rate. For c ¼ Std ¼ 1,
one can expect that the particle diffusion is generally due to homogeneous, isotropic turbulence
once the particles have exited the inner region of the boundary layer, as t=hsKi approaches 10.
However, at these times, sp is an order of magnitude greater than sK (see Table 1b) such that one
could expect large inertial effects (Hinze, 1959). Thus, short-time diffusion behavior can be ex-
pected, consistent with the observed quadratic diffusion rate. Indeed, the mean-square spread
tends to obey the classic, short-time quadratic dependence on time as shown in Fig. 7b.

Fig. 8 displays the data from both studies for the transverse mean-square deviation from the
injection location for the same cases previously discussed with respect to Fig. 7. In Fig. 8a, little
difference is noticed between the 10�1 case and the 10�2 case. This result is interesting in that it
indicates that the slope of mean transverse deviation for all the particles is approximately the same
for c < 10�2 (and Std ¼ 10�2), even though the profiles in the near-wall region showed substantial
differences (see Fig. 5a). Thus, examining mean transverse deviation alone obscures the sub-
stantial local near-wall turbophoresis effects. Additionally, the largest c value gives the greatest
transverse deviation for the constant Stokes number study and approximately a quadratic slope.
This is simply a consequence of the dominance of terminal velocity in carrying particles away
from the injection location, i.e. this increase primarily results from ½yp � y0� � t � Vterm.

Fig. 8b gives the transverse mean-square deviation (from the injection location) results for five
of the cases considered in the constant Frd study. Interestingly, the c ¼ 10�2 and 10�1 cases show
an overall mean deviation which is somewhat less than the tracer case of c ¼ 10�4. This is
attributed to the larger particle inertia for these cases and leads to a reduced diffusion rate at
short-times. Further increase in c results in a mean-square value greater than that of the 10�1 case
simply due to the increased yþ location caused by terminal velocity (as also noted in Fig. 8a).
3.4. Particle–wall impact velocities

Fig. 9a and b show the horizontal and vertical bounce velocities for both studies normalized by
us. These data were collected in a bin stretching from x� ¼ 8 to x� ¼ 15 such that the effect of the
initial condition on this statistic will be minimized. In this figure, the absence of a data point
implies that no particle in the simulation made contact with the reflection plane imposed at yþ ¼ 1
(e.g. no reflections at either of the c ¼ 1 cases). Similar to the results of Uijttewaal and Oliemans
(1996), the magnitude of the particle’s horizontal and vertical impact velocities were found to
generally scale with us. The streamwise and vertical bounce velocities increase with c up to a value
of 10�1 which is consistent with the increasing capture distance necessary for wall collision as Vterm
increases (especially at high inertias). Beyond c ¼ 10�1 for Frd ¼ 1, Fig. 9 shows that tangential
impact velocities increased but vertical impact velocities decreased since these particles cannot
respond as quickly to wall trapping velocities (velocities directed towards the wall). Interestingly,
the streamwise and transverse bounce velocities are constant and nearly identical in both studies
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for c6 10�3 indicating that the bounce velocities are not dependent on terminal velocity or Stokes
number for these conditions. This is consistent with other test conditions (Dorgan, 2003).

Fig. 9c displays the ratio of the bounce velocities and is related to the angle that the particle
contacts the reflection plane. For c6 0:0316 the results are virtually identical between the two
studies. At c6 10�3, the particles are nearly passive scalars with respect to crossing the yþ ¼ 1
reflection plane and yield small angles due to the low ratio of v0f rms=u

0
f rms near this plane. At higher

c values, the increased vertical velocity directed toward the wall needed to overcome the higher
Vterm values, caused steeper angles when the particles impact the reflection plane, though the angles
remain small (the impact angles range from 0.3� to 4.4�). Once c and Stokes number are both large
(hStKi greater than unity), there is a reduction in the angle caused by reduced transverse particle
velocity fluctuations at high inertias (as previously noted).
3.5. Velocities along the particle trajectory

Fig. 10a shows the vertical particle velocity collected in the DNS flow as well as the vertical
particle velocity collected in the zero-turbulence flow, both normalized by Vterm. These statistics
are Lagrangian averages taken over all particle trajectories within the particle tracking domain of
Fig. 2, and thus represent the average velocity of the particle cloud as it moves downstream. In
considering the zero-turbulence results, it is helpful to recall that these simulations simply in-
volved integrating the particle equation of motion in the mean flow field (neglecting all influence
of turbulent fluctuations). As such, in the cases with cP 10�2, hvpi=Vterm is approximately equal to
one since Vterm � ½vf �. However, for c ¼ 10�3, ½vf � at the injection point is approximately Vterm=3,
such that the combination of ½vf � and Vterm should (and does) result in a particle transverse velocity
of approximately 4/3 Vterm. In the DNS flow (fluid velocity fluctuations present), hvpi is approx-
imately 200 times larger than the terminal velocity for the smallest c value shown on the plot. This
indicates the dominance of turbulent diffusion at moving particles away from the wall when
compared to terminal rise velocity effects for c � 1 (as noted in Fig. 8). As c increases, the DNS
vertical velocities decrease and approach the zero-turbulence curve where the two coincide at the
largest c values, since gravitational effects dominate the mean particle velocity.

Fig. 10b and c show the Lagrangian vertical relative velocity for the constant Stokes number
and constant Froude number studies, respectively. If the particles were released in a homoge-
neous, isotropic turbulent field and no particle reflection condition was imposed at the wall, one
would expect the Lagrangian vertical relative velocity to equal the terminal velocity of the particle,
i.e. hvreli ¼ Vterm, after transients have decayed. Note that a linear drag law and Lagrangian
averaging eliminates the bias due to preferential concentration (Wang and Maxey, 1993, Loth,
2000). Notable departures from this behavior are seen in the present study and are found to be
related to the transient effects as discussed in the following.

Recall that the particles are injected with the sum of the average Eulerian fluid velocity and the
particle’s terminal velocity (Section 2.3) and as such, they are not in equilibrium (on average) if
there is a mean drift in the transverse fluid velocity observed along the particle path. This phe-
nomenon can be qualitatively demonstrated by constructing an analytical model for particle re-
sponse to simple sinusoidal fluid velocities. In particular, two sinusoidal fluid velocity profiles 180�
out of phase are applied with an initial particle velocity of Vterm yielding the result (Dorgan, 2003).
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hvreli ¼ 1� kv0f rms

Z bsf

e�t=sp dt ð6Þ

Vterm bVterm 0
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In the above expression, ‘‘b’’ is chosen to be an integer and k is a constant used to account for
the Lagrangian mean drift in the fluid velocity as seen by the particle. Choosing bsf to be con-
sistent with the integration times given in Table 1 and taking k as the values given by the data of
the DNS fluid velocity statistics (Dorgan, 2003) will result in a hvreli less than Vterm. Note, that if
there were no gradient in the Eulerian vertical fluid velocity, we would not expect hvreli to deviate
from Vterm. Application of this model to the constant Stokes number study (where k is approxi-
mately constant) predicts that hvreli=Vterm should approach �1 as c becomes much less than one,
whereas hvreli=Vterm should approach unity as c increases. This is qualitatively consistent with the
DNS data (Fig. 10b). For the constant Froude number study, hvreli=Vterm is approximately pre-
dicted as unity for very high c and very low c, but a lower hvreli for c on the order of 10�1 due to
the combination of transient effects and the mean drift in the Lagrangian fluid velocity.

To complement the mean relative velocity statistics, the fluctuations of the relative velocity were
also considered. The root-mean-square (rms) of the relative transverse velocity fluctuations with
respect to the Lagrangian mean can be defined as
vrel;rms ¼ vrelð
Dn

� hvreliÞ2
Eo1=2

ð7Þ
Fig. 11a shows these fluctuation magnitudes normalized by the Eulerian fluctuation value col-
lected along the particle trajectories (v0f rms). These results indicate that the fluctuations are
approximately constant for the constant Stokes number case but increase for the constant Froude
number case. Similar trends were found for the streamwise relative velocity fluctuations, as well as
statistics from other DNS cases (Dorgan, 2003 and Dorgan and Loth, 2003). This indicates that
the variations are primarily a consequence of changing inertia ðStKÞ. For small inertia cases, the
relative velocity fluctuations are negligible compared to the turbulence intensity and are of the
order of Vterm (as expected). As the particle inertia becomes large ðStK > 1Þ the particles tend
towards a moving Eulerian trajectory such that fluid turbulent fluctuations will dominate the
relative velocity, i.e. Vrel;rms ! V 0

f rms for StK � 1. Evidence of this behavior was also given in the
channel flow studies of van Haarlem et al. (1998) and Narayanan et al. (2003).

To predict these trends, a simple model was constructed based on the analytical response of the
particle’s relative velocity subjected to a sinusoidal fluid velocity with zero mean. Dorgan (2003)
shows that the relative velocity fluctuations in this case have the following form:
vrel;rms

v0f rms

¼ urel;rms

u0f rms

¼ bStK
1þ b2St2K

 !2
8<
: þ 1

1þ b2St2K

 
� 1

!2
9=
;

1=2

ð8Þ
where b ¼ cos�1ð1=eÞ. The theoretical predictions are compared with streamwise and transverse
velocity results in Fig. 11b indicating reasonable qualitative agreement, despite the inhomoge-
neous complex nature of the DNS flow.

Finally, the particle Reynolds number is considered as it is of importance when considering the
validity of the linear drag-law assumption. As such, Fig. 12 gives the Reynolds number based on
both Vterm and based on the magnitude of the relative velocity averaged along the particle path
hjRepji ¼
hjVreljidp ð9Þ
mf
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where
hjVrelji ¼ u2rel
�D

þ v2rel þ w2
rel

�1=2E ð10Þ
As a result of its definition, Rep;term will increase with drift parameter for the present test condi-
tions as demonstrated by the solid lines in Fig. 12. The constant inertia case (Fig. 12a) yields a
slope of unity since the fluid viscosity and the particle diameter were held constant while the
terminal velocity increases linearly with c (due to changes in gravity). However, the constant
Froude number case has a slope of 1.5 (Fig. 12b) since the particle diameter is also increasing as
Vterm increases.

The results of Fig. 12a indicate that Rep is approximately constant with respect to changes in c
for a given Stokes number (in stark disagreement from the terminal velocity result). This is due to
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the strong contributions made by the turbulent fluctuations for particle conditions with large
ratios of Stokes number to drift parameter (i.e. large Froude numbers). In such cases, the grav-
itational effects should be expected to be of secondary importance and as such, the Reynolds
number based on the terminal velocity is a poor indicator for c � 1 in these flows. For the
constant Froude number results shown in Fig. 12b, it is seen that the DNS particle Reynolds
number increases with c and has approximately the same slope as the Rep;term curve, although it is
shifted upwards due to the presence of the finite rms of the relative velocity experienced by the
particle in the DNS flow.

To explain these trends, a simple theoretical model was constructed based on results
from the zero-turbulence data combined with the Eq. (8) model for the rms velocities, such
that
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jVrelj2 ¼ jVrel;zero-turbulencej2 þ V2
rel;rms ð11Þ
As shown in Fig. 12, this simple approximation gives a reasonable representation of the results for
both the constant Stokes number and constant Froude number simulations, despite inhomoge-
neous, anisotropic nature of the flow.
4. Conclusions

Simulations have been conducted in a turbulent boundary layer ðRes ¼ 270Þ for a range of
particle drift parameters ð10�4

6 c6 100Þ with a fixed inertia (constant Stokes number study,
Std ¼ 10�2) and then with a variable inertia ðFrd ¼ 1Þ. Flow visualization indicated that for nearly
fluid tracer conditions (c and Stþ � 1), particle ejections from the near-wall region initially cor-
related strongly with boundary layer ejections of the carrier phase. For higher terminal velocities
away from the wall, the correlation was reduced due to the crossing trajectory effect. Additionally,
increases in the Stokes number resulted in substantially reduced diffusion and an increase in c
generally results in lower near-wall concentration of particles as the higher terminal velocity tends
to remove particles from this region. The concentration profiles near the wall were also affected by
changes in the Stokes number since turbophoresis forced particles towards the wall when Stþ was
of order unity or greater.

Examination of the spanwise mean statistics showed increased diffusion for increases in c for
constant Stokes number, but decreased diffusion for increasing c for constant Froude number.
These results were attributed to turbophoresis, inertia, and wall interaction effects such that
canonical homogeneous, long-time diffusion rates were never fully realized. Similar behavior
was noted for the transverse diffusion except that terminal velocity dominated at large c
values.

With respect to particle–wall collisions, the drift parameter was found to be the dominant
parameter in determining the impact velocity for Stþ < 3 with the present flow conditions where
increasing c yielded increasing velocities. This was attributed the increasing capture distance
necessary for collision with the reflection plane even though the terminal velocity was directed
away from the wall. However, at larger Stokes numbers, the inertia and injection conditions were
found to be influential.

With respect to Lagrangian-averaged velocities, a close coupling was noted between transverse
particle velocities and turbulent diffusion for small drift parameters, whereas the terminal velocity
dominated the movement as the drift parameter approached unity. In addition, the high inertia
particles were seen to experience large relative streamwise velocity fluctuations on the order of the
Eulerian fluctuations, whereas the small inertia particles had comparatively lower fluctuations (as
the trajectories were more coupled to the fluid unsteadiness). Similarly, particle Reynolds number
based on the average of the relative velocity magnitude, hjVrelji indicated a transition from being
dominated by turbulent diffusion at small drift parameters and small Stokes numbers, to being
dominated by the particle’s terminal velocity at large drift parameters. The relative velocity
fluctuations and the average Reynolds number were reasonably predicted by considering a simple
sinusoidal model for the fluctuations in the relative velocity.



A.J. Dorgan, E. Loth / International Journal of Multiphase Flow 30 (2004) 649–673 673
Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the Defense Advanced Research
Projects Agency.
Acknowledgements

This material is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under grant MDA972-01-C-0042 with Dr. Lisa Porter as Project Manager.
Additionally, facilities of the San Diego Supercomputer Center were utilized for the direct
numerical simulations. The authors would like to thank Professor P.K. Yeung of the School of
Aerospace Engineering at Georgia Tech and Todd L. Bocksell for their valuable comments/input
on this publication.
References

Barton, I.E., 1996. Exponential-Lagrangian tracking schemes applied to Stokes law. J. Fluids Eng. 118, 85–89.

Bocksell, T.L., 2003. Numerical simulation of turbulent particle diffusion. Doctoral Dissertation, University of Illinois

at Urbana-Champaign.

Brooke, J.W., Kontomaris, K., Hanratty, T.J., McLaughlin, J.B., 1992. Turbulent deposition and trapping of aerosols

at a wall. Phys. Fluids A 4, 825–834.

Dorgan, A.J., 2003. Boundary layer dispersion of near-wall injected particles of various inertias. Master of Science

Thesis, University of Illinois at Urbana-Champaign.

Dorgan, A.J., Loth, E., 2003. Simluation of particles released near the upper wall in a turbulent boundary layer.

Technical Report: AE 03-05, UILU ENG 03-0505.

Hinze, J.O., 1959. Turbulence. McGraw-Hill Book Company.

Kaftori, D., Hetsroni, G., Banerjee, S., 1995. Particle behavior in the turbulent boundary layer. II. Velocity and

distribution profiles. Phys. Fluids 7, 1107–1121.

Loth, E., 2000. Numerical approaches to dilute two-phase flow. Prog. Energy Combust. Sci. 26, 161–223.

Marchioli, C., Soldati, A., 2002. Mechanisms for particle transfer and segregation in a turbulent boundary layer. Fluid

Mech. 468, 283–315.

Narayanan, C., Lakehal, D., Botto, L., Soldati, A., 2003. Mechanisms of particle deposition in a fully developed

turbulent open channel flow. Phys. Fluids 15, 763–775.

Pedinotti, S., Mariotti, G., Banerjee, S., 1992. Direct numerical simulation of particle behavior in the wall region of

turbulent flows in horizontal channels. Int. J. Multiphase Flow 18, 927–941.

Spalart, P.R., Watmuff, J.H., 1993. Experimental and numerical study of a turbulent boundary layer with pressure

gradients. J. Fluid Mech. 249, 337–371.

Stock, D.E., 1996. Particle dispersion in flowing gases––1994 Freeman scholar lecture. J. Fluids Eng. 118, 4–17.

Uijttewaal, W.S.J., Oliemans, R.V.A., 1996. Particle dispersion and deposition in direct numerical and large eddy

simulations of vertical pipe flows. Phys. Fluids 8, 2590–2604.

van Haarlem, B., Boersma, B.J., Nieuwstadt, F.T.M., 1998. Direct numerical simulation of particle deposition onto a

free-slip and no-slip surface. Phys. Fluids 10, 2608–2620.

Wang, L-P., Maxey, M.R., 1993. Settling velocity and concentration distribution of heavy particles in homogeneous

isotropic turbulence. J. Fluid Mech. 256, 27–68.

Wells, M.R., Stock, D.E., 1983. The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J.

Fluid Mech. 136, 31–62.

Young, J., Leeming, A., 1997. A theory of particle deposition in a turbulent pipe flow. J. Fluid Mech. 340, 129–159.


	Simulation of particles released near the wall in a turbulent boundary layer
	Introduction
	Methodology
	Turbulent boundary layer
	Particle equation of motion
	Test conditions

	Results
	Flow-visualization
	Particle concentration distribution
	Particle diffusion rates
	Particle-wall impact velocities
	Velocities along the particle trajectory

	Conclusions
	Disclaimer
	Acknowledgements
	References


